

Tivoli ➠ ViewStar

 Integration

Preliminary

Created: Bill Plein June 1997
Revised: Tedy Shalev July 1997

VSTivoli.DOC - 17/10/2017 Page 1 of 16

TABLE OF CONTENTS

Page

1.0 INTRODUCTION .. 2

2.0 FEASIBILITY STUDY .. 2

3.0 THE METHOD .. 3

4.0 FILE-BASED MESSAGING ... 4

4.1 OVERVIEW... 4

4.2 OPERATION ... 4

4.3 VIEWSTAR SCHEDULED TASK .. 5

5.0 LEVERAGE .. 5

6.0 TRIGGERS AND THRESHOLDS ... 6

7.0 SYSTEM TOOLS REPORTS ... 6

7.1 USERS ... 6

7.2 CACHEDIRS ... 6

7.3 DATADIRS .. 7

8.0 CUSTOM REPORTS ... 7

8.1 OFFXLOCK ... 7

8.2 OFFXSCAN ... 8

8.3 PRODFAX1 ... 9

8.4 OFFCOUNT ... 9

8.5 ARCHVOLS .. 10

9.0 LOG MONITORING ... 11

10.0 SUMMARY ... 11

APPENDIX A - DIRECTORY TREE SPECIFICATION ... 12

APPENDIX B - TIV_TASK.INP FILE FORMAT .. 14

APPENDIX C - RULES FOR CUSTOM REPORT TASKS .. 14

APPENDIX D - VIEWSTAR LOGS ... 15

VSTivoli.DOC - 17/10/2017 Page 2 of 16

1.0 INTRODUCTION

Tivoli is Halifax’s choice for Enterprise Management Software. Halifax has requested
that Mosaix investigate the potential monitoring the ViewStar system resources, by
Tivoli. The Tivoli software can, among others, remotely monitor systems, deliver
software, schedule and activate tasks, compile data, etc.

This integration project attempts to resolve and define those areas of the ViewStar
product that can be integrated with the Tivoli management solution, and to provide a
mechanism for that integration.

The challenge was to provide Tivoli access to ViewStar resource information, without
a detrimental affect on the routine operation of the Business Centres production.

2.0 FEASIBILITY STUDY

The following possible information sources were considered:

1. ViewStar System Reports - available through the System Tools module.

2. ViewStar Queue Monitor Report - available through the Queue Monitor Utility.

3. ViewStar Custom Reports - developed using ViewStar Script.

3.1. Supplants online lookups in Configure, Document Locate, System Tools.
3.2. Adds reporting for resources that are not easily administered online.

4. ViewStar Log files - tracked by the LogWatch Utility.

5. Operating Environment Resources (non-ViewStar)

5.1. Native NT monitoring of disk space
5.2. Native Oracle tools for RDBMS management
5.3. Network monitoring of LAN/WAN (SNMP, etc.)

In general, a System Administrator will use information from all the above resources
to manage a single ViewStar system. In the specific case of the Halifax Business
Centres installations, there is a need to leverage the administration across multiple
systems such that performance monitoring can be administered from a central site.

Resource depletion is a known common cause of any workflow system failures.
Tivoli’s scheduled remote monitoring could provide early warnings and send alerts
upstream, such that proactive action can be taken. However, such implementation
requires the integration of Tivoli with ViewStar.

VSTivoli.DOC - 17/10/2017 Page 3 of 16

The integration solution had to address the following:

• ViewStar Reports - through a Reporting/Tasking mechanism. This would allow
Tivoli to launch a request for a specific report or sets of reports. The request
would be interpreted by ViewStar and the appropriate task, generating the
required report would be launched. The resulting report would then be posted to
a predefined directory on the File Server. The reports will be Tivoli readable.

• ViewStar Log files - a LogWatch Messaging mechanism, providing Tivoli with
messages that can be defined through the standard LogWatch filters and alerts.
This messaging mechanism will be implemented through a Tivoli supplied DLL.

• Native Monitoring - it is assumed that Tivoli will handle the Operating
Environment resources natively, with no required input from ViewStar.

This document concentrates on the subject of ViewStar Reports.

3.0 THE METHOD

Many ViewStar resources can be administered through standard reports, custom
reports or, where all these fall short, by using the application interface of the
standard ViewStar modules. Examples of typical resources that a system
administrator may take interest in are:

• Queue Report (count all, or count with status busy, locked, error etc.)

• Data Directory Allocation and Remaining space, includes File Server volume
space and internal ViewStar thresholds.

• Cache Directory Allocation and Usage.

• Optical Volumes information, eg. Volumes names, access and space remaining.

• Changes in ViewStar Users and Profiles.

When examining methods for Tivoli to monitor the state of these ViewStar
resources, we rejected the "Direct Inspection Method", described below:

Direct inspection of the ViewStar system is reading files and tables
directly in order to measure ViewStar resources. Tivoli, with its
ability to call command line files, could launch just about anything
(command line SQL tools, TESTIT.EXE, etc.)

This method was abandoned due to the potential for blocking-actions which could
adversely affect the ViewStar system. In addition, this method was bound to overlook
long term supportability, since ViewStar internals, database schema and file formats
could change, with future software releases.

We chose an integration method through a "Reporting/Tasking" mechanism. This
has been pursued as a "proof of concept", using the file system to emulate an In
Box, Out Box messaging style communication.

VSTivoli.DOC - 17/10/2017 Page 4 of 16

4.0 FILE-BASED MESSAGING

4.1 OVERVIEW

One benefit of using an “indirect” file based messaging system, using Input / Output
mail-boxes, is that it provides the ViewStar system with full control over those
activities that may be triggered at Tivoli’s request. Furthermore, Tivoli’s interference
with the routine operation of the production system is limited to a pre-determined set
of reports that may be delivered at a frequency that is determined by a ViewStar
Process Agent configuration.

As the system and business administrators find areas that they wish to automate
through scheduled tasks, those tasks could be invoked by Tivoli, rather than the
Process Agent Schedule directly. This would allow all the systems to ensure
mirroring of their scheduled tasks where such mirroring is appropriate.

4.2 OPERATION

The “Tivoli Input Box” is a pre-defined sub-directory, under ViewStar’s dataroot,
namely <dataroot>\Tivoli\INPUT. The only entry in this mail box that ViewStar will be
monitoring is an ASCII text file named Tiv_Task.INP. This file is created and/or
exclusively updated by Tivoli. A ViewStar task is scheduled to run on a Process
Agent (dedicated to Tivoli?). This task probes for existence of this input file. Upon
detecting this file the ViewStar task copies it to a work area and deletes the original
file. It then interprets each line in the file as a request to generate a report. Each
line is expected to contain a list of two strings (or more, if in future there is a need to
pass more arguments to the ViewStar task). The first string nominates the ViewStar
task (the file name) that will be invoked. The task name is limited to a maximum of
eight characters, also bound by the traditional DOS file naming convention. The
second string is the name of the expected report output file. The report file name is
in 8.3 format, ie. the full file name may be defined, including extension.

Appendix B describes the Tivoli input file (Tiv_Task.INP) format and contents.

The “Tivoli Output Box” is assigned as a pre-defined sub-directory, under ViewStar’s
dataroot, namely <dataroot>\Tivoli\OUTPUT. Tivoli expects the resulting report
file(s) to be posted to its “Out Mailbox. It is the Tivoli software responsibility to
manage the naming conventions of these report output files and to appropriately
administer archiving and distribution of these files.

VSTivoli.DOC - 17/10/2017 Page 5 of 16

4.3 VIEWSTAR SCHEDULED TASK

The Tiv_Task.VFX or Tiv_Task.FSL script file must exist in a special Tivoli task
directory. This script includes a generic task spawner, that will invoke the tasks that
were nominated in the Tiv_Task.INP file, by Tivoli.

The concept here is that Tivoli appends to the Tiv_Task.INP file for each report
requested, and the Tiv_Task script scrapes this file and runs the scripts. The script
tiv_Main found in Tiv_Task is set to run on a Process Agent, at appropriate intervals
(once every minute ?)

Note: Triggering a request to run a task through an SQL database
could provide an alternative that could reduce potential file locking
problems.

5.0 LEVERAGE

The real strength in the Reporting/Tasking is not in the simple reports themselves.
The strength comes with the ability of the Tivoli system to store this information, and
process it to compile further details such as historical and statistical comparisons.
This could be taken a step further, where day-to-day changes in the system could be
tracked, and the “delta” or difference in a particular resource could be tracked where
applicable. An example would be locked documents. If a rapid change in numbers of
locked documents were to occur, this could raise a flag for further investigation by
the administrator.

So certain reports will be passed on to the administrators without further analysis by
Tivoli, while great benefit could be had by having Tivoli do further analysis on certain
resources, like disk space, allowing extrapolation of the resources state for some
period in the future.

To take this one level higher, comparisons between systems could also be
enlightening. This could highlight differences in the way each Business Centre
processes its workflow, perhaps highlighting problem areas or uncovering user
efficiencies that could be spread or taught to users on other systems.

VSTivoli.DOC - 17/10/2017 Page 6 of 16

6.0 TRIGGERS AND THRESHOLDS

Any given ViewStar system can be thought of as a living, evolving system. While the
Business Centres, might have an identical workflow map and library structures, their
rate and cycles of workpackets will be unique. For example, Business Centre “A”
might typically process 2000 items per day, while Business Centre “B” might only do
500. This clearly indicates that alerts on any thresholds would have to consider local
volumes. Similarly, the two systems, despite the huge difference in absolute size,
may have similar absolute fluctuations in resources, i.e., the peaks and valleys in
queue counts may be 100 workpackets in absolute measures.

As a result, each system will require individual triggers and thresholds for each
resource that one may want to oversee. These thresholds are a matter of “taste” for
the local System Administrators, and could need tuning and development through
experience and over time.

7.0 SYSTEM TOOLS REPORTS

There are a number of standard ViewStar reports available through the System
Tools module. Many of these could be triggered from script and integrated into this
system. Some of these reports require user intervention and will therefore not run as
a task on a Process Agent. If needed these will have to be developed using Script.

The following examples are standard ViewStar reports that are activated directly
from a Script run by a Process Agent.

7.1 USERS

Creates a USERS report (refer to System Tools), containing a list of users that were
defined through ViewStar’s Security module.

7.2 CACHEDIRS

Creates a report on the ViewStar’s Cache Directories (refer to System Tools),
containing a list of Sites, Directories, Maximum and Minimum threshold levels and
the Filled status.

VSTivoli.DOC - 17/10/2017 Page 7 of 16

7.3 DATADIRS

Creates a report on the ViewStar’s Data Directories (refer to System Tools),
containing a list of Sites, Directories, Max Files and current number of files.

8.0 CUSTOM REPORTS

Resulting from discussions with the System Administrator at Lovell Park, the
following custom reports were developed:

8.1 OFFXLOCK

The Halifax Business Centre workflow makes continuous use of a number of
“offload” queues (currently 4 queues BC_OFFX01, BC_OFFX02, BC_OFFX03,
BC_OFFX04) serviced by (currently 10?) ViewStar Process Agents. Monitoring these
queues is most critical to maintaining the workflow in good health. On occasions
workpackets that for whatever reason fail while being routed to their next destination
in the workflow, remain locked in one of these offload queues. Regular monitoring of
these queues using the conventional Queue Utility Search function from the
Configure module is time consuming. Furthermore, workpackets may orderly be
locked (STATUS = 1) for short periods, in these queues by tasks that are executed
by Process Agents. The challenge is to note which of the currently locked
workpackets have not moved for a longer period. Under normal conditions
workpackets should not be locked by Process Agents for longer than a minute. The
“Last Updated” field of the Status (REQUEST) table, found in the Workflow Tracking
database is the only source that contains an indication as to when (Date and Time)
last a workpacket was locked or updated in any ways. Combined monitoring of
these tables, through Queue Utility Search (Configure) and Document.Locate…
(Desktop module or System Admin application) is a laborious task. This report
automates and streamlines this procedure.

This report searches the offload queues for any workpackets with a STATUS = 3
(error) and reports their details: Queue Name, Last update Date and Time, Status,
WF_ReqID and Roll Number. Also reported are all those workpackets in the offload
queues that are unavailable (ie. STATUS > 0) and their last update date and time is
longer than 15 minutes, before the time the report was created.

If any workpackets are reported a message is sent to the Process Agent’s log (when
in logging level 1). This message may be trapped by any conventional methods
offered by the LogWatch utility.

VSTivoli.DOC - 17/10/2017 Page 8 of 16

Example OFFLOCK report

 Offload Queues Exception Report - created: 08-Jul-1997 09:44:35
 ==

Queue Last update Status ReqID RollNo

BC_OFFX01 08-Jul-1997 07:28:31 3 226898 A/ 9760349- 4
BC_OFFX01 08-Jul-1997 08:39:42 1 206602 A/ 3300779- 3

BC_OFFX02 08-Jul-1997 07:24:51 3 107537 A/ 9593863- 4
BC_OFFX02 02-Jul-1997 12:36:04 2 225340 000000

BC_OFFX03 08-Jul-1997 07:24:51 3 70542 D/35327899- 9

--- E N D ---

8.2 OFFXSCAN

The BC_OFFX04 queue is a special offload queue, dedicated to offloading scanned
workpackets. The OffXScan report monitors this queue and reports the number of
locked documents (STATUS > 1). If any such workpackets are detected, a message
is sent to the Process Agent’s log (when in logging level 1). This message may be
trapped by any conventional methods offered by the LogWatch utility.

Example OFFXSCAN report

 Scanner Offload Queue Count Report - created: 11-Jul-1997 11:30:15
 ==

 Queue Count (Status > 1)
 --
 BC_OFFX04 10

 -------------------------- E N D -------------------------------

VSTivoli.DOC - 17/10/2017 Page 9 of 16

8.3 PRODFAX1

When a user attempts to send a fax to an invalid number, following the usual retries
attempts, the workpacket containing the fax document remains locked with an error
status (STATUS = 3) in PRODFAX1, the fax out queue. This report monitors this
queue and reports the Date and Time, Telephone number, From and To details that
are found on this workpacket.

If any workpackets are reported a message is sent to the Process Agent’s log (when
in logging level 1). This message may be trapped by any conventional methods
offered by the LogWatch utility.

Example PRODFAX1 report

 Fax Output Queue Errors Report - created: 11-Jul-1997 10:06:09
 ==

 Date Time Telephone From To
 --
 11/07/97 09:34:37 01618320833 RAYT Nerrinder NW Property Unit

 --- E N D --

8.4 OFFCOUNT

Counts the total number of workpackets in the offload queues and reports the result.
A high number of workpackets is generally an indication of some malfunction. This
report does not send an error message to the Process Agent’s log file.

Example OFFCOUNT report

 Offload Queues Count Report - created: 11-Jul-1997 10:33:15
 ==

 Queue Count
 --
 BC_OFFX01 11
 BC_OFFX02 5
 BC_OFFX03 5
 BC_OFFX04 146

 ----------------------------------- E N D --------------------------------

VSTivoli.DOC - 17/10/2017 Page 10 of 16

8.5 ARCHVOLS

This report delivers information on the optical volumes. The Volume Names, Access
(Read Only or read/Write), the Online/Offline state and MB remaining for each
volume are displayed in a tabulated format. This report does not send an error
message to the Process Agent’s log file.

Example ARCHVOLS report

 BC Archive Volumes Report - created: 10-Jul-1997 17:42:44
 ===

 Volume Access Online MB remaining

 BC96A01 Read Only Yes 1114.21
 BC96B01 Read Only Yes 911.45
 BC96A02 Read Only Yes -
 BC96B02 Read Only Yes -
 BC96A03 ---???--- No 1182.66
 BC96B03 ---???--- No 1182.66
 BC96A04 Read Only Yes -
 BC96B04 Read Only Yes -
 BC97A05 Read/Write Yes 461.23
 BC97B05 Read/Write Yes 402.10

 -- E N D ---------------------------------

VSTivoli.DOC - 17/10/2017 Page 11 of 16

9.0 LOG MONITORING

Generally, the typical logs that a System Administrator is interested in are:

• Process Agent Log

• Optical Log

• Archive Log

• Fax Server Log

Tivoli ships with its own log file adapter that scans log files, and can be used to
trigger on errors, etc. Their adapter, however, was not designed to cope with the
unique ViewStar logging, which rolls over to other file names (wfserve.log,
wfserve.001, wfserve.002, etc.). Since their adapter is not customisable to handle
ViewStar specific logging, and also due to the potential for blocking actions should a
process open the file in an ill-behaved way, we will not use Tivoli to monitor the log
files directly.

It is envisaged that the LogWatch session will run on a server, that will also run the
Tivoli Process Agent. A Tivoli communications process will be triggered through the
LogWatch capability of executing a DLL function on a pre-set event, passing the
message on as a Tivoli Alert. Given LogWatch’s ability to pass the name of the log
file and the line number to the DLL function, it is possible that a Tivoli messaging
agent could scrape the line and its context lines above it and send that up to the
Tivoli system. The possibilities are limitless. However, the required DLL has yet to
be developed, so a proof-of-concept test is not available at the time or writing.

10.0 SUMMARY

The project has so far developed the methods of integration with Tivoli. An initial set
of critical reports where developed using Script, based on experience gained from
the pilot installation at Leeds - Lovell Park. Additional such reports may be added
on, following the guidelines set down by those already developed.

The outstanding task is that of setting up the specific LogWatch triggers, where such
are applicable. This cannot be done in a vacuum, from an abstract sense. Any
implementation MUST be developed by local System Administrators familiar with the
particular system. Their knowledge of the system specifics is important, and equally
important is that the administrators understand exactly what is being monitored, as
that knowledge empowers them to be wary for those resources that are NOT being
monitored. Only a working relationship between ViewStar System Administrators and
Tivoli integrators can finalise a successful implementation of such management
system.

VSTivoli.DOC - 17/10/2017 Page 12 of 16

APPENDIX A - DIRECTORY TREE SPECIFICATION

The inclusion of the Tivoli integration within the existing ViewStar File Server
directory structure is described in Figure 1 below. All necessary scripts and sources
(on the development system only) are stored under the readroot. The dynamic part
of this system, ie. the Tivoli requests and ViewStar’s resulting reports are stored
under the readroot directory structure.

Figure 1 - Tivoli Integration directory tree

The files and directories that control the messaging are as follows:

<Tiv_Read> Abbreviated form for:
 ..\VS\RR01\READDATA\PROJECTS\TIVOLI

<Tiv_Data> Abbreviated form for:
 ..\VS\DR01\TIVOLI

<Tiv_Read>\Tiv_Task.FSL The compiled version of a script file that

contains the function tiv_Main, scheduled to
run at a pre-set interval on a Tivoli Process
Agent.

Tiv_Data

Tiv_Read

� Tivoli In Box

� Tivoli Out Box

VSTivoli.DOC - 17/10/2017 Page 13 of 16

<Tiv_Read>\CFGFILES\ Sub-directory containing configuration (.CFG)
files used by ViewStar tasks invoked at Tivoli’s
requests. Note that the CFGFILES may be
written to by the tasks, which strictly speaking
would indicate that they should be moved
under <Tiv_Data>.

<Tiv_Read>\TASKS\ Sub-directory containing compiled ViewStar

script files (.VFX or .FSL). These scripts are
invoked by the tiv_Main ViewStar function, as
per Tivoli’s requests that were found in
Tiv_Task.INP. The following custom scripts
should be placed in this sub-directory:
OffLock.FSL, OffScan.FSL, OffCount.FSL,
ProdFax1.FSL, ArchVols.FSL. These files
generate ViewStar reports stored under
<Tiv_Data>\OUTPUT\.

<Tiv_Read>\TASKS\SRC\ Sub-directory containing ViewStar scripts

source code (.VSS). The compiled version of
these files is stored in <Tiv_Read>\TASKS\.
This directory should exist only on the
Development System.

<Tiv_Data>\AUDIT\ Location for any necessary logging by

ViewStar tasks, operating at Tivoli’s requests.

<Tiv_Data>\INPUT\ Input directory for Tivoli’s requests. Tivoli

places a text file named Tiv_Task.INP in this
directory. If the file exists Tivoli appends a new
request to the end of this file.

<Tiv_Data>\INPUT\index.lock Counter for filename extensions, used by

Tivoli.

<Tiv_Data>\OUTPUT\ Output directory for ViewStar tasks. Tivoli

expects all ViewStar report files to be stored in
this sub-directory.

<Tiv_Data>\WORK\ Working directory for use by ViewStar.

<Tiv_Data>\WORK\Tiv_Task.WRK Working copy of the Tiv_Task.INP file. This

file is created by the tiv_Main function of
Tiv_Task.FSL.

VSTivoli.DOC - 17/10/2017 Page 14 of 16

APPENDIX B - TIV_TASK.INP FILE FORMAT

The file is a series of lines. Each line consists of a ViewStar list of two strings. The
first string is the name of the task, and the second string is the name of the output
file.

Example:

------Tiv_Task.INP---
[“qmon” “qmon.019”]
[“users” “users.01a”]
[“cachdir” “cachdir.01b”]
[“offxload” “offxload.001”]
[“offxscan” “offxscan.001”]
[“offcount” “offcount.001”]
------ End of file --

Tivoli appends new lines to Tiv_Task.INP as requests are made from its scheduler,
console, etc. On each scheduled pass, the ViewStar process agent will move this
file to the <Tiv_Data>\WORK directory, then read each line and run the task as
applicable. The output filename appended to the output directory path, is passed as
an argument to the report script.

Tivoli is responsible for unique output file naming conventions. If the filename
already exists, the ViewStar output will either append or overwrite, as determined by
the report (Queue Monitor and other system reports always append, but custom
reports could be written otherwise). Tivoli uses index.lock to supply a new extension
to every request. Tivoli is responsible for erasing old reports as necessary.

APPENDIX C - RULES FOR CUSTOM REPORT TASKS

The function tiv_Main of Tiv_Task.VSS passes the fully qualified output file name, as
the one and only argument, to the report generating task. Tasks that generate
ViewStar custom reports must be written so as to require no user intervention and
display no messages, other than to the Process Agent’s log file (:WFM_MESSAGE).
Following this rule ensures that the tasks will run cleanly on a Process Agent.
Documentation for these tasks should include minimum run cycles (i.e. “Run as often
as necessary” or “Database Intensive - run no more than once an hour”, etc.).

VSTivoli.DOC - 17/10/2017 Page 15 of 16

APPENDIX D - VIEWSTAR LOGS

The following is a list of ViewStar generated log files:

VIEWSTAR.LOG:
Logs information and errors discovered by startup.exe and vstart32.exe shows
names of Lisp applications that have started and stopped. Also logs all Lisp errors
discovered by each Lisp environment and reported through VSError that have
occurred at the workstation. Written to %windir%.

VSSETUP.LOG:
Used by installation to list information and errors. Written to c:\vstemp (sub-directory
created by installation program). Default name set in mods\vssetup\vssetup.inf, but
changeable by user dialogue.

IMPTERR.LOG
Used by the Importer module, located by default in <dataroot>\imptfile\impterr.log.
Name can be set by an environment variable

C:\STKTRACE.TXT
Default name for a Dr. Watson type log created by Lisp when it faults.
Configurable in viewstar.ini, Allegro CL section.

VSSQL.LOG
Used by idba to log all database information both from it and from the vendor.
found in %windir% or as defined in VIEWSTAR.INI

VSSYSTEM.LOG
Used for critical system administration issues by the LogWatch module, shared by
workstations, located in <dataroot>.

PROCESS AGENT LOGS
Monitor the state of the server. Process Agent log name set by agent name, but
changeable by user dialogue. Increments to 100 logs of 100k each and then kills the
oldest. Logs extensions are renamed so the *.log is always current, *.L00 next, and
*.L99 oldest.

OPTICAL.LOG
Monitor the state of the server. Optical name set in a local optical.ini file.

APPTRACE LOGS
Tracks the flow of documents through applications written to <username>.log under
the <dataroot>\userlog subdirectory.

FWDERROR.LOG
Formatted log generated when documents fail to forward; uses an automatic
recovery script that can process errors, written to <dataroot>.

VSTivoli.DOC - 17/10/2017 Page 16 of 16

ISAM FILE LOGS
Created when certain corruptions are detected and (sometimes) corrected in .ISM
files name is path and base name of isam file, with the extension ".ILG". Records
corruptions along with the date, time, user name, and (in the case of partial records)
the contents of the deleted partial record by setting (as env variable or in viewstar.ini)
the variable ISAM_SYS_LOG to a path system logging is turned on for global
logging of ISAM corruptions. All that is written to this file is a single record indicating
the error and the path to the .ILG file containing details.

COMMON SERVER (FAX) LOGS.
 Path and name settable in the fax server configuration. Increments to 100 logs of
100k each and then kills the oldest. Logs extensions are renamed so the *.LOG is
always current, *.L00 next and *.L99 oldest.

OCR & DATABASE LOGS
Process Architect creates a file OUTPUT.TXT during builds.

SCHEDARC.LOG
Written to the dataroot

ARCHIVE.LOG
Written to dataroot

CKINONLY.LOG
Written to dataroot.

RECVARCH.LOG
Written to dataroot.

RECOVER.LOG
In the dataroot seems to contain optical recovery info.

WFSERVER.LOG
Process Replicator log file. This file is created during the upgrade process.

